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INTRODUCTION

For over 40 years, the theory of R� and atomic
functions (AFs) [1–45] and, recently, the theory of
WA�system functions [8–19] have been actively devel�
oped in various physical applications. The theories of
atomic and R�functions are elaborated in monographs
[1–13]. In Russia and foreign countries, intense inves�
tigations oriented to the development and application
of the theory of AFs combined with Rvachev functions
(R�functions) in physics and engineering are carried
out for a wide frequency spectrum extending from the
microwave to optical range. Being vast, the review is
divided into four parts. In this first part the following
issues are considered:

(i) the main physical applications of atomic,
WA�systems, and R�functions,

(ii) the Whittaker–Kotelnikov–Shannon (WKS)
sampling theorem and its generalization based on AFs,

(iii) atomic functions in the theory of probability
and random processes,

(iv) interpolation of stationary random processes
with AFs,

(v) a new class of probabilistic weighting functions
(WFs) used in digital signal and image processing.

1. THE MAIN PHYSICAL APPLICATIONS 
OF ATOMIC, WA�SYSTEMS, 

AND R�FUNCTIONS

The recent investigations in the field of AF applica�
tions include the following scientific lines:

(i) generalized Kotelnikov series based on AFs
 and 

(ii) the AF�based generalized N�dimensional WKS
theorem,

(iii) AF�based Levitan and Strang–Fix polynomials,
(iv) WA�systems of Kravchenko–Rvachev func�

tions and their application for detecting short�term
alternating�sign and ultrawideband (UWB) physical
processes,

(v) AF�based spectral processing of UWB signals,
(vi) Kravchenko–Kotelnikov analytical wavelets in

digital signal processing (DSP),
(vii) Kravchenko–Pustovoit time WFs (windows)

in surface�acoustic�wave DSP devices,
(viii) Kravchenko–Kotelnikov WFs in digital sig�

nal spectroscopy,
(ix) a Cohen’s class time–frequency distribution

with AFs in a nonlinear DSP,
(x) atomic and atomic�fractal functions in the

antenna theory,
(xi) investigation of the behavior of an electric�

dipole’s field pulse,
(xii) DSP in synthesized aperture radar,
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(xiii) orthogonal wavelet bases in signal and image
digital processing,

(xiv) AFs in the theory of probability and random
processes,

(xv) synthesis of 2D digital filters of a complex
geometry,

(xvi) multidimensional filtering,
(xvii) nonparametric signal estimation,
(xviii) gyroscopy,
(xix) construction of Kravchenko–Kotelnikov–

Gauss and Kravchenko–Kotelnikov–Levitan–Gauss
WFs,

(xx) a new class of wavelets based on AF 
(xxi) a new class of Kravchenko–Rvachev analyti�

cal wavelets,
(xxii) AF and wavelet�based digital processing and

spectral estimation of UWB signals,
(xxiii) Kravchenko and Kravchenko–Rvachev

WFs in problems of radar image construction and
antenna aperture synthesis,

(xxiv) AFs in the theory of probability and stochas�
tic processes,

(xxv) AFs in problems of physical electronics,
(xxvi) the theory of R�functions and WA�systems

functions applied for the solution of boundary value
problems of mathematical physics.

( ),ah x

Spectral Properties of Atomic Functions 
in Digital Signal Processing

As is known, the choice of WFs [4–21] is one of the
main points in classical problems of spectral signal
estimation. Window DSP, which, in particular, is
applied to control physical parameters, is based on the
presence of sidelobes in spectral estimates. The ideas
and results previously presented are used to develop
new approaches to spectral estimation. Thus, new
WFs are constructed in the form of a direct product of
AFs  and classical Gaussian, Bernstein, and
Dolph–Chebyshev windows (Table 1). These results
are the basis of digital spectral processing of multidi�
mensional signals, antenna aperture synthesis, the
solution of problems of signal compression, com�
puter tomography and thermography, and medical
diagnostics.

2. THE WHITTAKER–KOTELNIKOV–
SHANNON SAMPLING THEOREM 

AND ITS GENERALIZATION ON THE BASIS 
OF ATOMIC FUNCTIONS

It is known that transmission of various signals over
communication systems usually involves time func�
tions whose spectrum is bounded, i.e., contains no fre�
quencies above a certain boundary value. Such func�
tions exhibit unique properties, which were first dis�

Nfup

Table 1. Basic parameters of the new Kravchenko and classical windows

WFs (windows) ENB OC, % SAM, dB TLmax, dB SLLmax, dB CG

1.9861 4.2498 0.8518 3.8318 –51.6112 0.3610

1.8105 7.4054 1.0259 3.6038 –53.7964 0.3944

1.9643 4.7297 0.8781 3.8101 –68.8390 0.3614

1.9631 4.7869 0.8809 3.8103 –70.6203 0.3607

1.9696 4.6700 0.8742 3.8180 –71.2806 0.3598

2.0415 3.7429 0.8156 3.9152 –74.8054 0.3467

1.8007 7.3910 1.0249 3.5793 –74.9523 0.3988

Rectangular 1.0000 50.000 3.9224 3.9224 –13.2799 1.0000

Triangular 1.3333 25.0001 1.8242 3.0736 –26.5077 0.5000

Gaussian 1.9765 4.6147 0.8702 3.8292 –71.0006 0.3579

Hamming 1.3638 23.3241 1.7492 3.0967 –45.9347 0.5395

Blackman–Harris (four�term) 2.0044 3.7602 0.8256 3.8453 –92.0271 0.3587

Nuttall (four�term) 1.9761 4.1760 0.8506 3.8087 –97.8587 0.3636

Dolph–Chebyshev 1.6328 11.8490 1.2344 3.3636 –70.0161 0.4434

Bernstein–Rogozinski 1.2337 31.8309 2.0982 3.0103 –23.0101 0.6366

Kaiser 1.7952 7.3534 1.0226 3.5639 –69.6568 0.4025

The following notation is introduced: (K) Kravchenko, (G) Gauss, (ENB) equivalent noise bandwidth, (OC) overlapping correlation (for
50% overlap), (SAM) spurious amplitude modulations, (TLmax) maximum transform loss, (SLLmax) maximum sidelobe level, (CG) co�
herent gain.

K4
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covered by Kotelnikov in 1933. He formulated these
properties in the theorem [46] playing a fundamental
role in the communication and informatics theory and
various other physical applications. Signals with a
finite spectrum can also be interpolated with the use of
the Fourier transforms (FTs) of AFs [5–9, 14–19],
because the zeros of these transforms are regularly
arranged. In addition, at infinity, the spectra of AFs
approach zero much faster than functions sinc(x), a
circumstance that allows truncating the interpolation
series to a comparatively small number of terms.

A. The Generalized Kravchenko–Kotelnikov Sampling 
Theorem for the 1D Case

Signal  with finite bandwidth  can be repre�
sented in the form [5, 16, 22–29]

(1a)

This expression satisfies all the conditions of the
Kotelnikov theorem and exhibits a better conver�
gence, especially, when signals local in time and dis�
continuous signals are restored. In the calculation it is
necessary to retain a finite number of terms in the
product on the right�hand side of series (1a). In this
case the exact expansion is valid:

(1b)

The minimum values of a can be found from the solu�

tion of the transcendental equation  = 2.
The Kotelnikov series follows from generalized
series (1b) when M → ∞ and series (1a) follows from
(1b) at the limit as . Let us formulate the
N�dimensional WKS theorem. Assume that

N�dimensional signal  =  ∈ 

is specified and that its FT  satisfies
the condition of the spectrum boundedness

Here, A is a certain domain in RN. Let =
 ∈ RN denote the spatial discretization

step and  =  =  ∈ RN

denote the discretization frequency. We introduce the
N�dimensional rectangular domain

 × ⋅⋅⋅ ×
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[ ]1 1,D Δ Δ= −ω ω [ ], .N NΔ Δ−ω ω

Theorem 1 (The N�dimensional sampling Theorem).
Let the signal spectrum be bounded and located in

domain  Then, when the domain entirely
covers domain A(D  A), the complete spectrum can
be restored from the set of samples with the help of the
following formula:

(2)

where Z is the set of integers,

Here,  and 

Proof. Let us form a spectrum that is a function
periodically extended with a frequency domain period
(Fig. 1). Then the spectrum that is a periodic function
can be expanded in the Fourier series

(3)
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Fig. 1. Reference frequency domains A, В, and D.
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The substitution of the expression for  into (3)
yields

 (4)

Consider a nonperiodic signal spectrum that can be
obtained from (3) by transmitting the signal through
an ideal lowpass filter with the frequency characteris�
tic (FC)

where B is a certain domain in RN. Then,

(5)

The inverse FT of (5) yields (2). As is known the WKS
theorem characterizes the limit capabilities of a com�
munication channel. Then series (2) should be under�
stood as

Then the convergence is determined in the quadratic
metric
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where

We have various corollaries of Theorem 1 that are
known from [22–29, 46–48] for 1D and 2D cases.

Corollary 1. The 1D sampling Theorem. Let us set
N = 1 in Theorem 1. In this case, we have the sampling
theorem variant formulated by Papoulis in [48]. Then
when signal spectrum  is bounded and lies in
domain [–Ω, Ω], it can unambiguously be recovered
from discrete sample values  
according to the formula

(6)

if  Here,  and  When
 series (6) becomes the known WKS rela�

tionship

(7)

where 

The WKS Theorem states [5, 46] that signal  can
be received at the receiver terminal when the complete
infinite sequence  is transmitted through an
ideal lowpass filter with the cutoff frequency π/Δ and
the amplitude–frequency characteristic (AFC)

 within the passband. However an ideal
lowpass filter does not exist, and, therefore, the com�
plete infinite sequence of sample values cannot be
transmitted through it. In [5] the WKS Theorem is
generalized with the use of AFs and the following
series is proposed:

 

where

It is shown that this choice of the interpolation kernel
can enhance the accuracy of interpolation by two
orders as compared to the classical series [46].

Corollary 2. The 2D sampling Theorem. In the
2D case series (2) has the following form:
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where

 

Here, the behavior of function  is completely deter�
mined by the shape of its domain. Let us present two
known examples [5] for rectangular and circular refer�
ence domains.

Example 1. As domain B let us consider the rectan�
gle  ×   
which coincides with domain D. We obtain the 2D
sampling Theorem for a rectangular frequency
domain of the form

(9)

In this case it follows from (9) that the interpolation
kernel equals the product of 1D interpolation kernels

Example 2. Let domain D be square  ×
 and domain В be a circle of the radius

 Domain А is within circle В. In this
case we obtain [22–29, 46] the 2D sampling theorem
for a circular reference domain of the form

(10)

where  is the first�order Bessel function of the
first kind.

Corollary 3. The N�dimensional sampling Theorem
for a rectangular frequency domain. By analogy with
the 1D and 2D cases (see (7) and (9)), we obtain the
N�dimensional sampling Theorem for a rectangular
frequency domain

(11)

where 

B. The Generalization of the Whittaker–Kotelnikov–
Shannon Sampling Theorem with the Use 

of Atomic Functions

We formulate the following Theorem.
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function  ∈  such that the following condi�
tions should be fulfilled:
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(ii)  for  (for points beyond domain D).

Then for any chosen discretization step  =
 ∈ RN such that A ⊂ D the following

expansion is valid:
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We have the domains B ⊂ D and 

Proof. The original signal is signal  with spec�
trum

Discretization of  with frequency ωΔ yields a sig�

nal that has spectrum  and is transmitted through
ideal lowpass filter  At the filter output, we have
processed signal  (2) with spectrum  (5). Next,
we transmit this signal through a filter with FC  to
obtain the output signal

(14)

where 

In this case we can change procedure (5) by form�
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nal fout (14).
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As is shown in [5, 22–29], one of the advantages of this
approach (introduction of the additional filter) is in
the combination of discretization and functional
transformation of the original signal. Combinations of

AFs and R�functions or other functions from 
satisfying the hypothesis of Theorem 1 can be chosen
as function . Let us obtain the Kravchenko–
Kotelnikov series based on AF 

C. The Generalized Kravchenko–Kotelnikov Series 
Based on the Fourier Transforms 

of Atomic Function 

Consider the generalized Kravchenko–Kotelnikov
series where the FT of AF  is used as the inter�
polation kernel. Atomic function  [5, 16] solves
the functional–differential equation

With the help of the inverse FT (IFT), AF  is
determined as

(15)

Here, 

 

Following [5], we present the following main proper�
ties of AF 

(i) 

(ii) 

(iii)  is an even function,
(iv) the function is normalized as

(v) the derivative of function  is expressed
through ,
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Let us apply Theorem 2 to obtain an interpolation
kernel of form  To this end, it is necessary to
choose appropriately normalized function  as

. Consider certain cases.
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If  we obtain the series

(17)

We retain a finite number of terms in the product from
series (18) to obtain

where

(18)

We have (18) as  and the WKS series for n = 0
and M = 1.

Case 4. When   we

obtain the series

 

where

 

The segment  is the support of function .
Thus function  does not coincide with  This
result is due to the fact that the support of function

 is beyond  It follows from series
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the WKS series  ( ) enables us to draw

the following conclusion: the use of (7) necessitates
taking into account the number of terms of the series
that is  times greater than the number of
terms retained in the case when (18) is used. Let us
exemplify this statement.
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Replacing the infinite product from (19) with a finite
one we obtain

 

For the WKS series, an analogous formula has the
form 

Let us analyze series (16). As  its interpola�
tion kernel approaches the quantity
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one to obtain

By analogy with (19), we have for series (6)

  The case  has been

considered above. Here, (20) becomes (19).
It follows from the comparison of the results

obtained for  and  [16, 22–29] that
generalized Kravchenko–Kotelnikov series should
be preferred to the WKS series. For example, the use
of one hundred terms of the series yields

 The accuracy of the generalized
Kravchenko–Kotelnikov series can be substantially
enhanced.

D. The Physical Meaning of the Generalized 
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As is noted in [5, 16, 22–29, 46], according to the
WKS theorem, continuous signals with a bounded
spectrum (BS) can be transmitted with the help of
pulse methods. This transmission system contains the
following basic units:

(i) a filter with cutoff frequency Ω that limits the
frequency interval of the signal spectrum,

(ii) a discretizer that makes it possible to separate
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(the WKS or Kravchenko–Kotelnikov kernels) pro�
duced by each individual sample pulse.

Such an ideal transmission system is difficult to
realize exactly. Why? For transmitted signals to be
reproduced exactly, the filter should introduce an infi�
nitely long time delay. The complete set of the WKS or
Kravchenko–Kotelnikov kernels participates in the
formation of the signal value at a point situated
between samples. Thus the recovery of the signal value
at the point between samples necessitates receiving
signal samples over an infinite time interval. The far�
ther a sample from the observed point and the rapider
the decrease of interpolation kernels and the smaller
the filter’s contribution to the formation of the signal
at this point. Therefore it is always possible to deter�
mine the number of samples in the neighborhood of
the observation point that provide for the signal recov�
ery with the necessary accuracy.

E. The Generalized Kravchenko–Kotelnikov Theorem 
for the Case of a Time Shift of a BS Signal

Let us analyze BS signal  with spectrum
width 2Ω. In the presence of a time shift the width of
the signal spectrum is retained according to the prop�
erties of the FT. Then, by analogy with (18), we obtain
the series

 (21)

Let us exemplify the application of new series (21). Let
 =   Then it follows from

(21) that

This relationship is valid for any x and α. When

  = , and  we

obtain conditions imposed on the choice of n
 Let us introduce the variable

 Then

Let us estimate the errors caused by the truncation of
the generalized Kravchenko–Kotelnikov series. For
the sake of obviousness, series (21) can be represented
as follows:
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When a finite number of terms are retained in this
expansion the error is

This error can be regarded as the output signal of a sys�
tem that has the FC

and input signal  We use the following expression
from [16]:
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is valid. This result can be explained as follows. If the
exponential function  can be expanded in the
Fourier series on interval  the coefficients of the
expansion have the form

We apply Parseval’s formula to obtain
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(23)

As has been shown above, since the generalized
Kravchenko–Kotelnikov series converges rapider
than the WKS series, truncation error in (22)  is sub�
stantially smaller than that in (23).

Consider another example. Let us denote

We specify a certain value of  (e.g., 0.2 s), set K = 10,
and plot dependences  and  For compar�
atively small values of α (–1.6 to 1.6),  is zero
(even at the points that are not sampling ones) and
function  exhibits oscillations. Let us investigate
the generalized Kravchenko–Kotelnikov Theorem in
the frequency domain.

F. The Generalized Kravchenko–Kotelnikov Theorem 
in the Frequency Domain

In practice, signal spectrum  very often has to
be represented by discrete samples, for example, when
a receiver–transmitter contains digital filters. For

spectrum  we have a series similar to (17) and (18).
The following Theorem is valid.

Theorem 3. Let signal  have a finite
duration

Then, its spectrum  can be represented by the
series

where  is the frequency sampling step satisfying
the condition 

Theorem 3 can be proved by analogy with Theorem 2.
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G. The Gibbs Phenomenon and Kravchenko Weighting 
Functions Based on Atomic Function fupn(k)

Let us investigate physical phenomena [16] related
with the Gibbs effect and demonstrate methods that
can be applied to remove it. In practice, this technique
is realized by introducing WFs (windows) [16, 22–29].
Let spectrum  of original BS signal have disconti�
nuities of the first kind at the boundary points .
The periodic extension of this spectrum with the fre�

quency  yields spectrum 

As  the series does not converge to F(ω) at the
discontinuity points, a circumstance that corresponds
to the known physical Gibbs phenomenon which is
due to the fact that the Fourier series minimizes the
root�mean�square error(RMSE).

Therefore the shape of the function that is
expanded in the Fourier series cannot be restored.
When  the Gibbs effect does not occur,
because the periodic extension is performed by joining
discontinuities. Thus, when , the Gibbs phe�
nomenon distorting the real spectrum is observed. We
consider certain issues related with this physical phe�
nomenon by analogy with studies [16, 22–29, 46].

Assume that only a segment of function 

(24)

is known. Here, function  is called a WF
(window) of function  The spectrum of such cut�
off function  is equal to the spectral convolution

(25)

where  is the spectrum of WF  In the case

of periodic function  represented by (24), we have
for the generalized Kravchenko–Kotelnikov series

(26)

Series (26) is the spectrum of signal (12) ( ). As
the original signal we can use (16)–(18) with corre�
sponding functions γ(ω). Assume that segment 
is known and WF  that is nonzero within interval

 is introduced. Then
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Expression (27) establishes the relationship between
( ) sample values of function  at the points

 and its spectrum  for differently weighted
sample values. Since (27) is a discrete FT of the prod�
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represented in the form of the convolution of their
spectra

(28)

where  is the spectrum of the WF for ( )
samples.

According to [5–9, 16], WFs (windows)  are widely
used in practice. Consider two of these

(i) a rectangular window

(29)

and (ii) a triangular (Feyer) window

(30)

We introduce the Kravchenko weighting function
(window) based on AF  We use property (ii)
for the support of function  to obtain the fol�
lowing WF:
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Thus, when it is necessary to apply finite number 
we can choose  for kernels of (31). It follows
from (28) that WF (window) (29) corresponds to a
finite sum in the WKS Theorem which in the case
when spectral analysis is performed for a discontinu�
ous spectrum, leads to the Gibbs effect. According to
[16, 22–29], the Gibbs phenomenon is removed when
a triangular window is used, because the WF spectrum
is positive. This physical phenomenon occurs when
spectral analysis is performed for random processes
( ). The application of a rectangular window
can lead to its negative spectrum. Then, this phenom�
enon is absent as in the case of WF (31).

H. The generalized Kravchenko–Kotelnikov Theorem 
for a Bounded–Spectrum Bandpass Signal
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be specified. Here,  for  and  is the
boundary frequency.

Signal (31) is associated with the analytical signal

 

where  is a function Hilbert�conju�

gate to . The complex envelope of signal  has
the form  With the help
of quadrature components the signal can be repre�
sented as

where  and 
We represent envelope  as 
Since  is the real part of  we have

The spectrum of the signal is

Here,  corresponds to the interval of spec�

trum  lying in the region of positive frequencies,

 corresponds to the interval lying in the

region of negative frequencies, and  is the spectrum
of BS function  i.e.,  = 0 when |ω| > Ω'.

With the help of the generalized Kravchenko–
Kotelnikov Theorem, function  can be repre�
sented in the form

(33)

where  and xΔ is the dicretization step.
Thus, we have for high�frequency signal 
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The amplitude and phase of a BS signal should be dis�
cretized with frequency  to eliminate the
superposition effect.

I. On the Further Application of the Generalized 
Kravchenko–Kotelnikov Theorem in Problems 
of the Information and Communication Theory

The generalized Kravchenko–Kotelnikov sam�
pling theorem can be extended to the theory of ran�

dom processes and signals [16] on the basis of  the fol�
lowing Theorem.

Theorem 4. Let  t ∈ R be a stochastic process
that is stationary in the wide sense and has a spectral
density vanishing beyond the interval 
Then, for arbitrary t ∈ R,  has the form

(34)

Proof. The proof is based on the use of the general�
ized Kravchenko–Kotelnikov sampling theorem for
the covariation function of process  Variants of its
application to the Shannon information theory are
possible. For example, let  be an
orthogonal decomposition of a noise on interval

 where

Quantities nl are characterized by Gausian distribu�
tions with the zero means and the variances

 Assume that useful signal  with a
bounded spectrum in band  is transmitted over a
channel with noise . This signal is summed with the
noise and forms the signal–noise mixture

 Signals   and  are deter�
mined by samples in a �dimensional space
according to the generalized Kravchenko–Kotelnikov
theorem. Let  be the probability density function

(PDF) of samples sl. Then, when 

the capability is  where  is

the frequency bandwidth,  is the mean noise
power in this band and  is the useful signal power.
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3. ATOMIC FUNCTIONS IN THE THEORY 
OF PROBABILITY AND RANDOM PROCESSES

A. The Probabilistic Properties of Parent Atomic 
Function 

Consider the basic notions related with AF 
[5] and its probabilistic properties [33–40]. We ask the
following question: If there is a sequence of heads�
and�tails discrete random quantities (RFs), how a uni�

form distribution can be obtained? Let  be a
sequence of independent discrete RQs taking the val�
ues –1 and 1 with the probability 0.5. Random quan�

tity  can be represented in the form

(35)

Let  be a sequence of independent RQs uni�
formly distributed on [–1, 1]. We ask the following
question: What PDF does the RQ

(36)

have? To answer this question, we use the property of
the PDF of a sum of two RQs [30–40]. Let RQ X (Y)
have PDF  ( ). Then, the RQ 
has the PDF

(37)

We apply formula (37) to calculate the PDF of the
RQ specified by equality (36).

The convolution of functions  and 
yields PDF  having a trapezoidal shape. Next
the convolution of functions  and  yields
a smoothed finite function with the support
[⎯0.875, 0.875]. Repeating the convolution proce�
dure an infinite number of times, we obtain a smooth
function. We denote this PDF  Let us show that

 solves the functional–differential equation

(38)

Function  introduced above as the convolution
of an infinite number of rectangular pulses, should sat�
isfy the following theorem.

Theorem 5. Probability density function  of
RQ ξ solves Eq. (38) and is analytically expressed as
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Proof. Since  is the convolution of an infinite
number of rectangular pulses, characteristic function
(CF)  of RQ ξ can be represented in the form

(40)

The PDF of RQ ξ is found with the help of the IFT of
CF (40). Thus, the PDF of RQ ξ has form (39). Let us
show that (39) solves (38). To this end we differentiate
(39) to obtain

(41)

Let us prove that the function  – 
equals (41). Actually

In the last expression we replace the variable according
to the formula  Then

Using in the last integral the property F(τ) =

 we obtain the relationship 
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which coincides with (10). The Theorem is proven.
We put the question: What PDF does the RQ

(42)

have? In (42)  is a sequence of RQs uniformly
distributed on [–1, 1] and  We answer this ques�
tion proving the following limit Theorem.

Theorem 6. Let a sequence of independent RQs
 uniformly distributed on [–1, 1] be

specified. Then, for any constant  the PDF of the

weighted sum  has the form

(43)

with the support 

Proof. It follows from the construction of  and
Theorem 5 that CF  of RQ (43) is

(44)

It follows from (44) that the PDF of RQ (42) has form
(43). Let us determine the support of PDF  We
represent (42) in the form

(45)

Obviously  where 
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The theorem is proven.
By analogy with Theorem 5 we can show that 

solves the functional–differential equation

(46)

Functions  and  belong to the class of AFs.
Definition. Atomic functions are finite solutions to

functional–differential equations of the form

(47)

where a > 1 and L is a linear ordinary differential oper�
ator with constant coefficients. Equations (45) and
(46) are special cases of (47). Operator (47) is compre�
hensively investigated in [5–9, 17].
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B. The Kravchenko–Rvachev Atomic Distribution 
and Its Moments

Let us define Kravchenko–Rvachev PDF  of
RQ X as

(48)

It is known from [5] that

(49)

Taking into account (49) we see that 

Let us find the mean of RQ X having PDF 
Actually
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Let us change variables in (50) according to the formu�
las  and  Then  We
determine the moments of the RQ with PDF (48). To
this end we find the moments of PDF  It follows
from (44) that CF  of RQ X exhibits the property
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Since

(51) implies that

Thus,

Since

and 

moments  of function  are represented in
the form

( )Xp x

( ) ( )1 .X a
x mp x h

b b
−

=

( ) ( )

( )

( )
1

1

1

1

1.

a

a a

a

h x dx h x dx

−

−

−

− −

= =∫ ∫
R

( ) 1.Xp x dx =∫R

( ) .ap x

( ) ( )
( )

( )
1

1

1

1

1 .

a

X X a

a

x mm xp x dx x h dx
b b

−

−

−

− −

−

= =∫ ∫
R

( )x m bτ = − .x b m= τ + .Xm m=

( ) .ah x
( )aF t

( ) ( ) ( ) .a a
t tF t F
a a

= sinc

( ) ( )
0

.k
a kk

F t c a t
∞

=

=∑
( )2 1 0.kc a

+
=

( ) ( )
2

2

0

.k
a k

k

F t c a t
∞

=

=∑

( ) ( )
( )

sinc
2 2

0

1
2 1 !

k k
k

k

t t a
a k

∞
−

=

= −

+
∑

( )
( )

( )

2
2 2

2 2 2

0

1
.

2 1 !

k j j
k j

k k j

j

c a
c a

a j

−

−

−

=

−

=

+
∑

( )
( ) ( )

( )

1
2

2 2

0

11 .
2 2 1 !1

k k i
i

k k

i

c a
c a

k ia

−
−

=

−
=

− +−
∑

( )
( )

( )
2

2
0

(2 )!

k
a

k
F

c a
k

=

( )
( ) ( ) ( )

2 20 1 ,kk k
a aF x h x dx= − ∫

R

( )2km a ( )ah x

We present the first ten moments for the special
case when a = 2 and 

 

Here, the variance of RQ X with PDF  is 1/9.
When the PDF of RQ X has form (48), its variance is

 and the root�mean�square deviation
(RMSD) is  We are mainly interested in PDF

 rather than  All the reasoning on 
can be extended to other AFs [5].

C. The Asymmetry, Excess, and Entropy 
of a Random Quantity Having the Kravchenko–

Rvachev Probability Density Function

Let us find the basic numerical characteristics
(except moments) of a RQ having the Kravchenko–
Rvachev PDF. According to the definition [30–40]
the ratio of third central moment m3 to the cubed

RMSD  is called asymmetry A of RQ X. In
our case A = 0. The ratio of fourth central moment 
to the squared variance minus the number 3

 is called excess E of RQ X. Let us find
the numerical value of the excess for an RQ with den�

sity  E =  The number
 is called entropy  =

 In our case the entropy is

H = 0.41328 for the logarithm base 2.
The Kravchenko–Rvachev distribution function.

Let us find the distribution function corresponding to
(48) under the condition that a = 2. By the definition

[30–32] we have  =  where
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We can represent (52) in the form

(53)

where

(54)

Distribution (52) is below referred to as the
Kravchenko–Rvachev distribution. Expressions (53)
and (54) have a form similar to the Gaussian (normal)
distribution such that
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where
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Figure 2 displays PDFs (48) and (55) and distribution

functions (53) and (57). We set  in (55) to
obtain 

The Chebyshev inequality. Consider the Chebyshev

inequality. Let θ be an RQ with mean m, variance ,
and PDF  Then,
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When  the following probabilistic state�
ments can be formulated on the basis of (58):
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[31, 32] and Kravchenko–Rvachev distributions.
We have

for the Gaussian distribution and

for the Kravchenko–Rvachev distribution. The last
expression is valid, because the domain of the
Kravchenko–Rvachev PDF is bounded by value b and

D. N�Dimensional Probability Density Function, 
Statistical Independence, and Mixed Expressions 

for Probabilities

Let us define the PDF [31, 32] of random
N�dimensional vector  ∈ RN for any

domain  as follows:
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Fig. 2. Behavior of the (a) probability density and (b) distribution function: the (solid line) Kravchenko–Rvachev and (dashed
line) Gaussian dependences.
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It is known [30–32] that RQs  are statis�
tically independent when joint density function px of
these quantities equals the product

(62)

If each RQ  has a PDF of form (48) then (62) is rep�
resented as

(63)

In the particular case when  (63) can be
expressed as

(64)

E. Cumulant Analysis of the Kravchenko–Rvachev 
Atomic Distribution

Characteristic function  of RQ θ can be rep�
resented as  =  where the equality

 is fulfilled. Let us expand function  in
the power series
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The coefficients of series (65) are such that

As moments, these coefficients are characteristics of a
probability distribution they are called cumulants or
semiinvariants [30–32]. Cumulants unambiguously
determine RQs if series (65) converges for all ξ. In this
case, the set of cumulants  can serve as
the identical representation of a probability distribu�
tion. When moments are known cumulants can be
found from the following relationships:
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In turn moments are expressed through cumulants as
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If  then all of the odd moments

and all of the odd cumulants are zeros. Let us present
the numerical values of the first five even moments and
cumulants (Table 2).

Note that the asymmetry and excess coefficients
found above are cumulant coefficients [30–32] that
describe the degree of deviation of a probabilistic dis�
tribution from the Gaussian function. Assume that
there is a distribution  having all cumulants. Its
CF can be represented as

 (66)

Coefficients  from (66) are the moments of distribu�
tion (48) that are determined for  These coef�
ficients, called the quasi�moments of a distribution
[43], are nonzero for non�Gaussian RQs only. The FT
of (66) yields

(67)

Expresson (67) is called the Edgeworth series. It is the
decomposition of an arbitrary RQ in derivatives of the
Gaussian distribution [30–40]. With the first four even
terms retained in (67) for distribution (48), we have

(68)

We present the simplest example of the application of
the cumulant approach for constructing a 2D PDF in
the case when RQs are coupled by correlation factor ρ
only. In this situation the CF has the form
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Table 2. Moments and cumulants of the Kravchenko–
Rvachev distribution

N Moments Cumulants

2 0.111 0.111

4 0.028 8.889 × 10–3

6 9.793 × 10–3 5.031 × 10–3

8 5.082 × 10–3 5.182 × 10–3

10 1.919 × 10–3 0.763
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(69)

where  and  are the CFs of RQs with densi�
ties (64). Each of the CFs can be represented in form
(66) or as

 (70a)

(70b)

Here,  and  are the first two cumulants of
distribution (48) (see Table 2). With allowance for
(70a) and (70b), 2D CF (69) can be represented in the
form

(71)

Relationship (71) is the product of the CF of the
Gaussian ensemble of two RQs  and the

Kravchenko–Rvachev CF of two RQs 

The Fourier transform of (71) yields the PDF

(72)

where

and  and  are the Kravchenko–Rvachev
PDFs specified by their cumulants (65) and (67).
Thus, we have obtained the 2D PDF of correlated
RQs. When  (72) becomes (64).

F. Methods of Digital Simulation of Random Quantities 
with the Kravchenko–Rvachev Distribution

Mathematical models of radio signals and radio
interferences are random processes that can be repre�
sented in the general form

(73)

where  is the time,  and
 are functions with random parameters,

 and  are random processes (noises) with
specified properties, and f is a certain function. Prac�
tically every oscillation observed at a certain point of a
radio channel can be represented in form (73). The pur�
pose of simulation of radio signals and radio interferences
is to reproduce random processes of form (73) that
mathematically describe radio signals and radio inter�
ferences at DSP devices. A process with a uniform
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PDF is the simplest for simulation. A random process
with the Kravchenko–Rvachev distribution law can be
obtained by summing weighted random numbers with
a uniform PDF. Random processes with the
Kravchenko–Rvachev distribution can also be simu�
lated with the help of the following methods: simula�
tion with the help of the gamma distribution [30–32],
the method of a forming filter, the sliding summation
method, and the method of canonical and noncanon�
ical representations.

Atomic quasi�harmonic stationary processes. Let us
present certain applications of the Kravchenko–
Rvachev atomic distribution applied for investigation
of a narrowband stationary noise. Consider a physical
process of the form

(74)

The PDF of process  has form (48). Random func�
tions ξ, ρ, and ϕ are assumed stationary. The station�
arity condition implies in particular that distribution

 is uniform:

(75)

Let us find the CF of process (74). We have

. (76)

Here,  is the joint PDF of  and  that corre�
sponds to distribution  Since  we can
decompose  in the Fourier series in variable ϕ

(77)

Let us represent factor  from (76)
in an analogous form as

 (78)

where  =  and  is the lth�order
Bessel function. The substitution of (78) and (77)
into (76) and integration of the result with respect to ϕ
yield

(79)

Since process  is assumed stationary,  is inde�
pendent of time. This means that all  except

 are zero, whence it follows that 
Hence,  which implies (75). Since

( ) ( ) ( )[ ]0cos .t t t tξ = ρ ω + ϕ

( )tξ

( )p ϕ

( ) [ ]1 2 , , .p ϕ = π ϕ∈ −π π

( ) [ ]( ) ( )0

0

exp cos ,F x d d ix t p

∞ π

−π

= ρ ϕ ρ ω + ϕ ρ ϕ∫ ∫

( ),p ρ ϕ ρ ϕ

( ) .p ξ [ ], ,ϕ∈ −π π

( ),p ρ ϕ

( ) ( ) ( ), exp .k

k

p V ik
∈

ρ ϕ = ρ ϕ∑
Z

[ ]( )0exp cosix tρ ω + ϕ

[ ]( ) ( ) ( )( )0 0exp cos exp ,l

l

ix t U x il t
∈

ρ ω + ϕ = ρ ω + ϕ∑
Z

( )lU xρ ( )l
li J xρ ( )lJ xρ

( ) ( ) ( ) ( )0

0

2 exp .k
k k

k

F x i ik t V J x d

∞

∈

= π ω ρ ρ ρ∑ ∫
Z

( )tξ ( )F x
( )kV ρ

( )0V ρ ( ) ( )0, .p Vρ ϕ = ρ

( )p ϕ = const,



JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Vol. 59  No. 10  2014

ATOMIC, WA�SYSTEMS, AND R�FUNCTIONS 997

equality (75) holds,  and  are unambiguously
coupled. Let us modify (79) into the form

(80)

(81)

Transforming (81) with the use of the new variables
ξ =  and  and elimi�
nating  via integration, we obtain

(82)

Expression (80) which is the Hankel transformation
yields

(83)

For the Gaussian distribution p(ξ) =  ×

 with the CF  =  the cor�

responding distribution for the envelope has the form

 =  For Kravchenko–Rvachev

distribution (48) at  and  the CF is

Figure 3 illustrates the comparison of  for the
Gaussian and Kravchenko–Rvachev laws in the case
of the corresponding normalization. The approach
developed above can be used to describe random pro�
cesses of a more general form such that

(84)

A random sequence of pulses can be represented in
form (54). Then function  describes the shape of a
pulse that is not distorted by fluctuations, ρ and ϕ
denoting random height and phase fluctuations of the
pulse respectively.

Generalized PDFs based on the Kravchenko–
Rvachev distribution. Finite distributions based on AFs

 can be useful in practice. The numerical charac�
teristics of the proposed distributions are summarized
in Table 3 and shown in Fig. 4.

The Kravchenko–Poisson PDF (Fig. 4a) is
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where a, b, c ∈ R.
The Kravchenko–Gaussian PDF (Fig. 4b) is

(86)

The Kravchenko–Rayleigh PDF (Fig. 4c) is

(87)

where 
The Kravchenko–Cauchy PDF (Fig. 4d) is

(88)

Here, c is chosen such that 

The theory of random processes. As is known
[30–40], random process  can be completely

( ) ( )2

2
1 exp , , , .
2 2

x xp x up a b c
bc a

⎛ ⎞
= − ∈⎜ ⎟

π ⎝ ⎠
R

( ) ( ) when

when

2

2
exp 0,

2
0 0,

x x xup x
p x c b a

x

⎧ ⎛ ⎞
− ≥⎪ ⎜ ⎟= ⎨ ⎝ ⎠

⎪ <⎩

, , .a b c ∈R

( ) ( )2 2
1 , , , .

a
xp x up a b c

c ba x
π

= ∈

+

R

( ) 1.p x dx =∫R

( )tξ

2.4

1.2
0.6

0
–0.6
–1.2
–1.8
–2.4
–3.0

1.20
0.96

0.720.24–0.24–0.72–1.20
–0.48–0.96 0 0.48

ρ

p(
ρ

)

1.8

3.0

12

Fig. 3. (1) Kravchenko–Rvachev and (2) Gaussian distri�
butions for envelope р(ρ).

Table 3. Moments of probability densities for various distri�
bution functions (85)–(88) (with the parameter a = b = 1)

m1 m2 m3 m4 m5

Kravchenko–Poisson

0.095 0.035 0.016 0.008023 0.00443

Kravchenko–Gauss

0 0.134 0 0.0013 0

Kravchenko–Rayleigh

0.387 0.18 0.093 0.053 0.031

Kravchenko–Cauchy

0 0.099 0 0.023 0
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determined by the set of PDFs of RQ ξ. The set
includes 1D PDFs, i.e., :

(89)

where  is the probability of the fact that at
instant t the process takes a value less than x. For each
pair of instants  and , the 2D PDF has the form

(90)

The first and second order moments play a special role
in the theory of random processes. This section of the
theory of random processes is called the correlation
theory. The correlation theory is extremely important
for practice, because the correlation function rather
completely characterizes the time structure of a ran�
dom process. In addition the correlation function is
rather easy to determine from experimental data. First

and second order moments  and  of a process
stationary in the wide sense are independent of time
and correlation function  of such a process
depends on the difference 

(91)

As a rule a process under study is represented by one real�
ization or a small number of realizations. Therefore, the
following ergodic property is used: time averaging is
equivalent to averaging over the set of realizations,
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Below, we study stationary random processes. Energy
spectrum  of a random process is determined
from the expression
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The inversion formula
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Estimation of the spectrum of a random process.

One of the important problems involved in the study of
random processes is as follows. There is one or several
time�bounded realizations of a random process. It is
necessary to characterize the process as a whole on the
basis of these data. It is assumed that such a process
(having an infinite number of realizations) can exist. If
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Fig. 4. (a) Kravchenko–Poisson, (b) Kravchenko–Gauss,
(c) Kravchenko–Rayleigh, and (d) Kravchenko–Cauchy
distribution functions.



JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Vol. 59  No. 10  2014

ATOMIC, WA�SYSTEMS, AND R�FUNCTIONS 999

the process is studied within the framework of the cor�
relation theory, then, it is necessary to find the corre�
lation or spectral density function of a process repre�
sented by one or several realizations. A certain func�
tional of available realizations is applied to determine
the spectrum of the process.

Spectral estimation is considered to mean the pro�
cedure of spectrum determination, and the correspond�
ing functional is referred to as an estimate [30–40]. Let
us introduce the following notation:  is a spec�
trum,  is the estimate of the spectrum,  is a

correlation function, and  is the estimate of the
correlation function.

The estimation of the spectrum of a random pro�
cess consists of three stages: measurement of sample
values, construction of the estimating functional, and
calculation of the estimate of a spectrum. When the
problem of estimating the numerical parameters (e.g.,
the variance) of a random process is solved, the
requirements imposed on the estimating functional
can accurately be formulated. For example, it is nec�
essary to ensure the minimum RMSD. When the
spectral density, which is a function of frequency, is
estimated, the requirements on the estimate are more
severe. The error in spectrum estimation consists of
two components: systematic and fluctuational. In
every particular case the parameters of the estimating
functional should be chosen such that the estimate is
the best suitable for a problem to be solved.

Estimates of the spectral density and atomic func�
tions. Let one or several time�bounded realizations

 be known. Then the estimate is constructed with
the use of the correlation function as the product of
τ�shifted realizations that is time�averaged. The fol�
lowing expression is valid:

(94)

where T is the duration realization 
Since estimating functional (94) differs from the

definition of the correlation function, estimate 
equals  on the average only every estimation result
randomly deviates from true values and the estimate is
not defined for 

The estimate of the correlation functional is often
represented in the form

(95)

Formula (95) can be represented in a more general
form. Let us introduce a WF for example,  to
obtain the following estimate:

(96)

( )g ω

(̂ )g ω ( )B τ

ˆ( )B τ

( )T tξ

1

0

1ˆ ( ) ( ) ( ) , ,

T

T TB t t dt T
T

τ = ξ ξ + τ τ ≤∫
( ).T tξ

1̂( )B t
( )TB t

.Tτ >

2 1

0

1ˆ ˆ( ) ( ) ( ) ( ),

.

T

T T
TB t t dt B

T T

T

τ = ξ ξ + τ = τ
− τ − τ

τ ≤

∫

( )up τ

2
ˆ ˆ( ) ( ) ( ).B up Bτ = τ τ

Estimate (96) can be represented in a more general

form if AF  with support  is introduced as

WF a(t). Then
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where c is the normalizing factor having the meaning
of the averaging interval length. For example

 for .

From (97) we find the relationship between 
and 
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Hence, WF a(t) generates WF  When
 we find

Note that function  us investigated in [5].
Let us estimate spectrum  using the expression

The mean of estimate  equals the smoothed
real spectrum
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where the spectrum of WF  serves as a smoothing
function.

Taking into account (98) and (99) we have
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is assumed to be the initial estimate, the introduction
of additional WF  smoothes the initial estimate of
the spectrum

where  is the spectrum of additional WF 
Let us summarize the above analysis. The correla�

tion spectrum is estimated in the following sequence:
correlation function  is estimated; next, WF 

(e.g., ) is introduced; and the estimate of the

spectrum is found by applying the Fourier transform to
the weighted estimate. In [14, 36] the filtered estimate
of a spectrum is considered in more detail.

Weighting and smoothing in the spectral analysis
based on atomic functions. In the discussion of the cor�
relation estimate of a spectrum we have introduced
WF  for a process realization, WF  for estimat�
ing the correlation function and corresponding
smoothing function  for estimating the spectrum.

Weighting functions applied in spectral analysis can
be categorized into several types according to the
character of operations performed with the help of
these WFs. The basic operations performed with the
help of WFs [5–21] are presented in Table 4.

Weighting functions  and  can be generated
by WFs  and  Then

 

In [5–21], it is shown that, when certain characteris�
tics are to be optimized, the use of WFs based on AFs
should be preferred to the use of classical WFs. The
following Kravchenko–Rvachev weighting functions
are applied most often:
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The main properties of WFs are presented in [5]. The
flowchart that illustrates introducing WFs for estimat�
ing the correlation function and spectrum is displayed
in Fig. 5.

4. INTERPOLATION 
OF STATIONARY RANDOM PROCESSES 

WITH ATOMIC FUNCTIONS

A. General Expressions for the Variance of the Error
in the Stationary Random processes Interpolated 

from Discrete Sample Values

The functional block diagram of the system that
discretizes and restores continuous signal  is dis�
played in Fig. 6. Here  is a signal discretized with
step  (formed from the original continuous signal by
a switch device) and  is the restored signal. Dis�
crete signal  approximately represents original
signal  with a certain error. Then the recovery of
signal  from discrete process  can be repre�
sented as the transmission of a sequence of Dirac δ
functions through an interpolating filter with transient
response  (see Fig. 6). Interpolated signal  has
the form

(101)

where  is the discretization step and 
The interpolation error

(102)

is considered as the output signal of the circuit.
Let us present relationships for the correlation

function, energy spectrum, and variance of error
 Here interpolation error  is a stationary

random process and its averaged correlation function
has the form

(103)
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Table 4. Operations performed with the help of weighting functions

Time function Amplitude spectrum Correlation function Energy spectrum  

Time weighting Frequency smoothing Time shift weighting  Frequency smoothing 

Time smoothing Frequency weighting Time shift smoothing Frequency weighting
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Let  be the correlation function of the original
random process. Then, the substitution of (101) and
(102) into (103) yields the relationships between 

and  and between  and . After some algebra
we obtain

(104)

where the asterisk denotes convolution, g(τ) =
 and 

It is known [43] that the energy spectrum is the FT
of the correlation function. Interpolation error 
for the energy spectrum can be expressed in terms of
energy spectrum  of the original signal, FC 
of the filter and discretization step Δt in the following
general form:
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(105)

where 

 

We set τ = 0 in (104) to obtain the expression for the
interpolation error variance averaged over period 

where  is the variance of the original random
process. The relative interpolation root�mean�square

error (RMSE)  has the form
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Fig. 6. Procedure of discretization and restoration of continuous signal s(t).
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relation function  and (b) the spectrum.ˆ( )B τ
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where  is the correlation factor of the
original random process.

Interpolating filters. Let us determine the optimal
FC of an interpolating filter. This characteristic should
provide for the minimum interpolation RMSE. To this
end, it is necessary to minimize the expression

 Let us represent  as

(106)

where  and  and find the
minimum of expression (106). To do this, we have to
solve the system of equations

(107)

We obtain from (107)

then  and Yopt = 0.
Thus the optimal FC of the interpolating filter has

the form

(108)
Then the minimum error in the interpolation of a sta�
tionary random process can be represented as

 

It follows from (108) that
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Since the optimal interpolating filter is difficult to
implement in practice, we apply various interpolating
functions (Table 5, Fig. 7).

Simulation. To perform simulation, we choose the
specific form  of the correlation
function of a random process, where

s–1, and the energy spectrum of the sig�

nal  In this case,

Let us compare the normalized characteristics
 for various interpolating functions (see

Table 5) calculated from formula (105) with the opti�
mum dependences  calculated from
(109) (Figs. 8a–8d). It follows from the analysis of the
behavior of the energy spectra of the interpolation
error (see Figs. 8a–8d) that the first�order element is
the closest to the optimal case. In order to numerically
estimate the results, we calculate relative interpolation

RMSE  from (106) and the relative RMSD of the

functions  from the function  accord�

ing to the formula

The comparison of interpolation RMSEs  and
RMSDs  for various recovery schemes is illustrated
in Table 6. It follows from these data that the first�
order element is the best in both of the characteristics
and the zero�order nonsymmetric element is the
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Table 5. Impulse and frequency characteristics h(t) and K(ω) of interpolating filters
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Fig. 8. Comparison of (curve 1) the normalized spectra GΔ(ω)/GΔ(0) of the process under study and (curve 2) the optimal case
Gopt(ω)/Gopt(0) for zero�order (a) nonsymmetric and (b) symmetric elements, (c) a first�order element, and (d) a Kotelnikov
ideal lowpass filter.
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worst. Let us apply the interpolation methods based on
the theory of AFs [5–19].

B. Interpolation of Stationary Random Processes 
with Atomic Functions

As interpolating functions, we use AFs  and
 Let us introduce the following notation:

(109)

( )ah x
( ) .nfup x

( ), 1

1

,
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(110)

Relationships (109) and (110) are scaled FTs of AFs
 and  that are represented analytically

as [5]

 

Relationship (110) becomes (109) when n = 0. Let us
calculate interpolation RMSE Δ2 and δ for the case
when the FCs of interpolating filters are specified by
expressions (109) (Table 7) and (110) (Table 8). It fol�
lows from the data presented in these tables that filters
with FCs  and  exhibit the best charac�
teristics in class  and that  and 
exhibit the best characteristics in class  Note
that, in filter class , relative RMSD δ can be
reduced by an order of magnitude as compared to class

 and to the linear interpolation; simulta�
neously, Δ2 is deteriorated. Let  denote the
energy spectrum of the interpolation error for filters
from class  The comparison of the depen�
dences  determined from Tables 7

and 8 and the dependences , which are the

best in this class, is illustrated in Figs. 9a and 9b. Note
that, at frequencies that are low (high) as compared to

, the filter with FC  ( ) most closely
approaches the optimal one.
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Table 6. Comparison of interpolation RMSEs and RMSDs

with the help of the   and  methods

Interpolating filter Δ
2

δ

Zero�order element

nonsymmetric 0.97467 1.55177

symmetric 0.58509 0.02472

First�order element 0.45635 0.01476

Ideal lowpass filter 0.61834 0.32833

2
1 4−Δ 1 4−δ

Table 7. Comparison of interpolation RMSEs and RMSDs
Δ

2 and δ for filters with FC (109)

Interpolation 
technique

Δ
2 0.49651 0.52469 0.48918 0.52157

δ 0.00352 0.00646 0.00431 0.00582

Here and in Table 8, the best results are in bold.
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5. A NEW CLASS OF PROBABILISTIC 
WEIGHTING FUNCTIONS IN DIGITAL 

SIGNAL AND IMAGE PROCESSING

A. Kravchenko–Cauchy–Gauss Probabilistic 
Weighting Functions

In [30–32], a new class of Kravchenko probabilis�
tic distributions based on AFs up(x) and ha(x) is pro�
posed and justified. Using these results, let us consider
the Kravchenko–Cauchy functions

(111)

and the Kravchenko–Gauss functions

(112)

where a, b, c, and g are real constants.

Taking into account the basic properties of AF
ha(x) [5] we can formulate the following Theorem.
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Theorem 7. The Kravchenko–Cauchy function of
form (111) solves the following functional–differen�
tial equation with a shifted argument:

(113)

The proof of this theorem is considered in detail
in [32].
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Table 8. Comparison of interpolation RMSEs and RMSDs
Δ

2 and  δ for filters with FC (110)

Interpolation 
technique
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Fig. 10. (a) View of signal, (b) equipotential line of uncertainty function, and (c) the uncertainty surface of the Kravchenko–
Gauss function (g = 1.0, а = 2, and b = 1).
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Table 9. Physical characteristics of a function ( )

CG ENB SLLmax, dB SAM, dB TLmax

Kravchenko–Cauchy

2 1 2.765 1.412 0.455 1.726 –26.666 1.068 3.440

3 2 2.500 1.357 0.582 1.415 –20.198 1.590 3.098

4 3 2.462 1.308 0.640 1.298 –18.788 1.904 3.038

5 4 2.500 1.417 0.672 1.237 –18.367 2.112 3.036

Kravchenko–Gauss

2 1 2.812 1.437 0.474 1.683 –24.908 1.121 3.381

3 2 2.615 1.462 0.616 1.380 –18.647 1.680 3.080

4 3 2.500 1.417 0.682 1.268 –17.117 2.020 3.052

5 4 2.333 1.333 0.720 1.210 –16.573 2.246 3.072

Kravchenko–Kotelnikov–Cauchy 

2 1 2.947 1.421 0.389 1.964 –30.788 0.834 3.764

3 2 2.812 1.437 0.463 1.667 –25.824 1.144 3.364

4 3 2.800 1.400 0.487 1.563 –26.959 1.300 3.241

5 4 2.733 1.400 0.498 1.515 –28.793 1.387 3.191

Kravchenko–Kotelnikov–Gauss 

2 1 2.842 1.368 0.402 1.918 –29.138 0.871 3.699

3 2 2.687 1.375 0.483 1.624 –23.945 1.202 3.309

4 3 2.667 1.400 0.511 1.520 –24.381 1.372 3.190

5 4 2.786 1.429 0.523 1.470 –25.479 1.468 3.142

Kravchenko–Kotelnikov–Cauchy 

2 1 2.950 1.400 0.374 2.028 –32.034 0.784 3.855

3 2 2.706 1.353 0.453 1.694 –26.605 1.110 3.398

4 3 2.867 1.467 0.481 1.578 –27.637 1.277 3.258

5 4 2.800 1.400 0.493 1.525 –29.387 1.370 3.202

Kravchenko–Kotelnikov–Gauss 

2 1 2.947 1.421 0.386 1.982 –30.430 0.818 3.789

3 2 2.750 1.437 0.472 1.650 –24.661 1.166 3.341

4 3 2.667 1.400 0.504 1.534 –24.923 1.347 3.206

5 4 2.786 1.429 0.518 1.480 –25.909 1.450 3.151

 is the relative position of the first zero of the AFC  (  is the half�power width of the AFC);  is the relative ⎯6�dB�
level width of the AFC, CG is the coherent gain, ENB is the equivalent noise bandwidth, SLLmax is the maximum sidelobe level, SAM is
spurious amplitude modulations, and TLmax is the maximum transform loss.

1g =

a b
2
*γ 4

*
γ

( )1, 2, 1M k= = Δ =

( )1, 2, 1M k= = Δ =

( )3, 2, 1M k= = Δ =

( )3, 2, 1M k= = Δ =

2 2 3*γ = γ γ 3γ 4 4 3*γ = γ γ
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Fig. 11. View of signal (a), equipotential line of uncertainty function (b), uncertainty surface (c) of Kravchenko–Gauss function
(g = 1.0, а = 5, b = 4).

With the notation

(114)

we obtain

(115)

The segment  is the support of func�

tion . If  we obtain the following
particular case:  = 0  

B. The Physical Characteristics 
of Probabilistic Distributions

Consider the following probabilistic distributions:

(i) Kravchenko–Cauchy distribution (111),

(ii) Kravchenko–Gauss distribution (112),
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(iii) Kravchenko–Kotelnikov–Cauchy distribution

(116)

and
(iv) Kravchenko–Kotelnikov–Cauchy distribution

(117)

where a, b, c, g, M, k, and Δ are real constants.
The modified characteristics investigated in [14]

are used for physical analysis of the functions. The
numerical values are summarized in Table 9.

C. Physical Analysis of Frequency–Time Properties 
of Probabilistic Functions

Consider frequency–time distributions of new
probabilistic functions (111), (112), (116), and (117).
The simulation and physical analysis of the results
obtained have shown that the proposed functions can
be widely used in various radiophysical applications.

( )

( ) ( )
3

12 2

1

; , , , , ,

sinc ,
M

a j

j

f x a b g M k

g x xh
b kc g x −

=

Δ

π
=

Δπ +
∏

( )

( )
4

2

2 1

1

; , , , , ,

1 exp sinc ,
2 2

M

a j

j

f x a b g M k

x x xh
bc g k −

=
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π Δ⎝ ⎠

∏
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For example, they can be used as pulses in problems of
remote sensing of inhomogeneous media. Let us
determine the form of the uncertainty function (UF)

(118)

which behavior is presented in Figs. 10 and 11 for sig�
nals (111) and (112) for various parameters.
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