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In this paper, we suggest and substantiate construc-
tions of a new class of WA-systems of Kravchenko–
Rvachev functions [1, 2] based on atomic functions
(AFs) and using the ideas and results of [1–7]. In the
first part, we describe an algorithm for constructing
WA-systems of functions, and in the second part, we
perform a computational study of a new family of com-
plex wavelets based on AFs and possessing a number of
useful properties. These wavelets and their Fourier
images are determined by analytical relations.

CONSTRUCTION OF KRAVCHENKO–RVACHEV 
WAVELET FUNCTIONS

According to [1–3], the construction of a wavelet
function 

 

ψ

 

 is determined by the requirement that a large
number of the coefficients 

 

〈

 

f

 

, 

 

ψ

 

j

 

, 

 

n

 

〉

 

 must be close to
zero. This number depends mainly on the regularity of
the function 

 

f

 

, the number of zero moments of 

 

ψ

 

, and
the size of the support of 

 

f

 

. If 

 

f

 

 is a regular function and

 

ψ

 

 has sufficiently many zero moments, then the wavelet
coefficients 

 

〈

 

f

 

, 

 

ψ

 

j

 

, 

 

n

 

〉

 

 are small if the scale 

 

2

 

j

 

 is small. In
this case, 

 

ψ

 

 has 

 

p

 

 zero moments

 

(1)

 

Theorem 1.

 

 

 

Suppose that 

 

ψ

 

 

 

and

 

 

 

ϕ

 

 

 

are a wavelet and
a scaling function generating orthogonal bases. If

 

 

 

ψ

 

(

 

ω

 

)

 

and

 

 

 

ϕ

 

(

 

ω

 

)

 

 

 

are

 

 

 

p

 

-

 

times continuously differentiable at the
frequency

 

 

 

ω

 

 = 0, 

 

then the following assertions are
valid

 

:

 

the wavelet

 

 

 

ψ

 

 

 

has

 

 

 

p

 

 

 

zero moments

 

;

tkψ t( ) td

∞–

+∞

∫ 0, where    0 k p.<≤=

 

ψ

 

(

 

ω

 

)

 

 

 

and its first

 

 

 

p

 

 – 1

 

 derivatives vanish at

 

 

 

ω

 

 = 0;

 

h

 

(

 

ω

 

)

 

 

 

and its first

 

 

 

p

 

 – 1 

 

derivatives vanish at 

 

ω

 

 = 

 

π

 

.

For any 

 

0 

 

≤

 

 

 

k

 

 < 

 

p q

 

k

 

(

 

t

 

) = 

 

ϕ

 

(

 

t

 

 – 

 

n

 

)

 

 is a poly-

nomial of degree 

 

k

 

.

 

The size of the support.

 

 If the function 

 

f

 

 has a singu-
larity at 

 

t

 

0

 

 and 

 

t

 

0

 

 is inside the support of 

 

ψ

 

j

 

, 

 

n

 

(

 

t

 

) =

 

ψ

 

, then the amplitude of 

 

〈

 

f

 

, 

 

ψ

 

j

 

, 

 

n

 

〉

 

 

 

may be

large. If 

 

ψ

 

 has compact support of size 

 

K

 

, then each
level 

 

2

 

j

 

 contains 

 

K

 

 wavelets 

 

ψ

 

j

 

, 

 

n

 

, whose supports con-
tain the point 

 

t

 

0

 

. To reduce the number of large coeffi-
cients, it is necessary to decrease the support of 

 

ψ

 

. The
following compact support theorem is valid [1, 3].

 

Theorem 2.

 

 A scaling function

 

 

 

ϕ

 

 

 

is compactly sup-
ported if and only if so is h

 

 

 

and the supports of 

 

ϕ

 

 

 

and

 

 

 

h
are equivalent. If the supports of

 

 

 

h

 

 

 

and

 

 

 

ϕ

 

 are equal to

 

[

 

N

 

1

 

, 

 

N

 

2

 

], 

 

then the support of

 

 

 

ψ equals ,

, where h is the dual mirror filter.

It follows from the properties of AFs [2] that their
Fourier spectra do not vanish at ω = π. Therefore, AFs
cannot be used as h(ω) (otherwise, one of the assertions
of Theorem 1 is false). To satisfy the conditions of The-
orem 1, we write h(ω) in the form h(ω) =

cos  · (ω). Here, (ω) is the Fourier-spec-

trum of the AF. On the time domain, such a function
(e.g., the AF up(t)) can be represented by using the
Laplace transform. Some basic properties of the AF
up(t), which refer to problems of operational calculus,
are given in [1, 2]. In this case, h(ω) has p zero
moments for ω = π. Such an approach makes it possi-
ble to use AFs in constructing new classes of wavelet
functions. Since the scaling function ϕ(x) must be
orthonormal, h(ω) must have some special properties,

nk

n ∞–=
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1

2 j
-------- t 2 jn–

2 j
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2
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⎛ ω
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namely, |h(ω)|2 + |h(ω + π)|2 = 1. According to [1, 3], if
a 2π-periodic function h(ω) has these special properties

and the product (2–jω) converges, then its

limit ϕ(ω) belongs to L2(R), and ||ϕ  ≤ 1. In this case,

the scaling function is defined by ϕ(ω) = h(2–iω).

Having determined the scaling function ϕ(x), we can
find the wavelet generating function ψ. For example, ψ
can be defined as

or, equivalently,

Then, ψ(x) and ϕ(x) are compactly supported functions
from L2(R) satisfying the equations

where the hn are given in the form

The algorithm for constructing WA-systems of
Kravchenko–Rvachev functions is as follows.

(i) Transforming the AF spectrum by the formula

h(ω) = cos (ω).

(ii) Constructing a scaling function of the form

ϕ(ω) = h(2–iω) with finitely many multipliers.

The number of multipliers must be larger than 2p,
where p is the number of nonzero moments.

(iii) Constructing a wavelet generating function on
the basis of the AF in the form

1

2π( )1/2
---------------- h

j 1=

∞

∏
||

L
2

1

2
-------

i 1=

∞

∏

ψ ω( ) 1

2
-------e

i
ω
2
----–

h
ω
2
---- π+⎝ ⎠
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2
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ψ x( ) 2 1–( )n 1– h n– 1–( )ϕ t n–( ).
n ∞–=

+∞

∑=

ϕ x( ) 2 hnϕ 2x n–( ),
n ∞–=

+∞

∑=

ψ x( ) 2 1–( )nh n– 1+ ϕ 2x n–( ),
n ∞–=

∞

∑=

h ω( ) 1

2
------- hne inω– .

n ∞–=
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∑=

2 -⎝
⎛ ω

2
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p
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∞

∏
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2
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i
ω
2
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h
ω
2
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⎛ ⎞ ϕ ω
2
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⎛ ⎞ ,=

or, equivalently, ψ(x) = –1)n – 1h(–n – 1)ϕ(t – n),

where (ω) is conjugate to h(ω). The resulting wavelet
generating function must satisfy the following condi-
tions.

A. The zero mean condition: (x)dx = 0. A

numerical experiment shows that it does hold.

B. The stability condition: A ≤ (2–jω)|2 ≤ B.

This condition also holds, because the function ψ(x) is
obtained by transforming the AF spectrum, which is
bounded from above by max( (ω)) = 1 and rapidly
decreases to zero. We do not multiply the AF by any
quantity removing the upper bound for the spectrum
amplitude. A numerical experiment confirms that this
condition is satisfied.

C. The orthogonality condition: for ψj, k(x) =
2j/2ψ(2jx – k) and ψl, m(x) = 2l/2ψ(2lx – m), where j, k, l,
m ∈ Z, 〈ψj, k, ψl, m〉 = δj, lδk, m. A numerical experiment
shows that the Kravchenko–Rvachev wavelet functions
constructed above are orthogonal.

CONSTRUCTION OF COMPLEX
KRAVCHENKO–RVACHEV WAVELETS

Construction procedure. The complex
Kravchenko–Rvachev wavelets [1] are based on the fol-

lowing convolution of an AF and the multiplier cosp ,

where p ∈ �:

(2)

where (ω) is the spectrum of the AF. The spectrum of
the family of complex wavelets (without normaliza-
tion) has the form

(3)

To find an analytical representation for the wavelets, we
must determine the inverse Fourier transform for
expression (3). For this purpose, consider the inverse

Fourier transform of cosp . We use the following rep-

resentation for odd p:

2 (
n ∞–=

+∞

∑
h

ψ
∞–

∞

∫

|
j ∞–=

∞

∑ ψ)

up

ω
2
----

ĥθ
p ω( ) ω

2
----cos⎝ ⎠

⎛ ⎞ p

θ̂ ω( ),=

θ̂

ψ̂̃θ
p

ĥθ
p ω π–( ).=

ω
2
----
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(4)

where  = . For even p, we have

(5)

It is known that

(6)

According to (4)–(6), for odd p, we have

(7)

and for even p, we have

(8)

Let us find the inverse Fourier transform for (2) by
using (7) and (8). For even p, we obtain

(9)

Similarly, for odd p, we have

(10)

It follows from (3) that

ω
2
----cos

p 1

2p 1–
----------- p

ω
2
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2
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∑

(11)

(12)

Therefore, the complex Kravchenko–Rvachev wavelets
are determined up to a normalizing multiplier by
expressions (9)–(12). However, in practice, wavelets
must have unit norm in the space L2. Let us determine
the norm of function (11). For this purpose, we calcu-

late || (t)|| with taking into account the fact that the
shift of a function does not affect its norm in the space
L2. After transformations, we obtain the following
expression for even p:

(13)

Similarly, for odd p, we have

(14)

A shift of a function in the frequency domain does not
affect its L2-norm either; therefore,

(15)

The expression for the above family of Kravchenko–
Rvachev wavelets with unit norm has the form

(16)

where (t) is determined by (12).

The Fourier transform of wavelets (16) is

(17)

where (ω) is determined by (2).
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Graphs of normalized Kravchenko–Rvachev com-
plex wavelets and their Fourier transforms are shown in
Figs. 1–3.

Substantiation. Let us show that functions (16)
obtained above are wavelets. For this purpose, we must
prove that they satisfy the conditions [4]

(18)

(19)

If (18) holds, then condition (19) is equivalent to

(20)

(21)

It follows from (9)–(12) that the wavelets under con-
sideration are products of linear combinations of
finitely many shifted AFs and the bounded continuous
function eiπt. Therefore, they inherit the following prop-
erties of the AFs from which they are obtained: conti-
nuity, compact support, and boundedness. These prop-
erties ensure the fulfillment of conditions (18) and (20)
(that they have unit norm is ensured by the above nor-
malization of function (11)). Thus, it remains to show
that functions (16) satisfy the zero mean condition (21).
This follows from the vanishing of the Fourier trans-
form (17) at zero:

(22)

ψθ
p L2, ψθ
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1
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2
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⎛ ⎞ p

θ̂ π–( ) 0.=

PROPERTIES OF COMPLEX
KRAVCHENKO–RVACHEV WAVELETS

In this section, we consider properties of the new
family of Kravchenko–Rvachev wavelets.

Zero mean. As shown above (see (21), (22)), the
complex Kravchenko–Rvachev wavelets satisfy the
zero mean condition

Smoothness. The complex Kravchenko–Rvachev
wavelets have the same degree of smoothness as the
AFs from which they are obtained. Indeed, wavelets
(16) are (up to multiplication by a constant) products of
eiπt, which is an infinitely differentiable function, and

the function (t), which is the sum of weighted shifts
by the argument of the AF θ(t). Therefore, for infinitely
differentiable AFs, complex wavelets (16) are infinitely
differentiable as well.

The size of the support. The complex Kravchenko–
Rvachev wavelets are compactly supported, because so
are AFs. The support of wavelets (16) coincides with

that of the function (t), which, in turn, depends on
the support of the AFs. The form of the dependence is
easy to determine by using (9)–(11). Suppose that the
AF θ(t) has support suppθ(t) = [a, b] and the support of
its complex wavelet is

(23)

It follows from (23) that the size of the support of a
wavelet increases with its order p. The sizes of the sup-
ports of some complex Kravchenko–Rvachev wavelets
are given in Tables 1–3.

Frequency resolution. The frequency resolution of a
wavelet ψ(t) is defined as the reciprocal of its frequency
spread [4]:

(24)

ψθ
p t( ) td

∞–
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∫ 0.=

hθ
p

hθ
p

suppψθ
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p
2
---– b
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---+, .=

σω
2 1

2π
------ ω η–( )2 ψ̂ ω( ) 2 ω,d

0

∞

∫=

Table 1.  The frequency spreads and supports of the complex Kravchenko–Rvachev wavelets (t) based on the AFs upm(t)

p
up1(t) up2(t) up3(t) up4(t) up5(t)

supp supp supp supp supp

1 1.78 [–1.5, 1.5] 1.56 [–1.5, 1.5] 1.33 [–1.5, 1.5] 1.19 [–1.5, 1.5] 1.17 [–1.5, 1.5]

2 1.15 [–2, 2] 0.97 [–2, 2] 0.83 [–2, 2] 0.74 [–2, 2] 0.74 [–2, 2]

3 0.85 [–2.5, 2.5] 0.71 [–2.5, 2.5] 0.60 [–2.5, 2.5] 0.54 [–2.5, 2.5] 0.54 [–2.5, 2.5]

4 0.67 [–3, 3] 0.56 [–3, 3] 0.47 [–3, 3] 0.43 [–3, 3] 0.42 [–3, 3]

5 0.56 [–3.5, 3.5] 0.46 [–3.5, 3.5] 0.39 [–3.5, 3.5] 0.35 [–3.5, 3.5] 0.35 [–3.5, 3.5]

ψθ
p

σω
2 σω

2 σω
2 σω

2 σω
2
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Fig. 1. Left: the graphs of complex Kravchenko–Rvachev wavelets ψ(t) based on the AFs up(t) of orders 1–5 (the dashed lines show
their imaginary parts); right: the corresponding Fourier transforms (ω) of the wavelets.ψ̂
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Fig. 2. Left: the graphs of complex Kravchenko–Rvachev wavelets ψ(t) based on the AFs fup2(t) of orders 1–5 (the dashed lines
show their imaginary parts); right: the corresponding Fourier transforms (ω) of the wavelets.ψ̂
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Fig. 3. Left: the graphs of complex Kravchenko–Rvachev wavelets ψ(t) based on the AFs eup(t) of orders 1–5 (the dashed lines
show their imaginary parts); right: the corresponding Fourier transforms (ω) of the wavelets.ψ̂
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where η = | (ω)|2dω is the frequency center of

the function (ω). For all wavelets considered in this
paper, the frequency center is η = π. This value is
obtained as a result of the frequency shift (17) of the
corresponding AFs, whose frequency centers are at
zero. The frequency spreads of some complex
Kravchenko–Rvachev wavelets are given in Tables 1–3.
These tables show that the frequency resolution of a
wavelet increases with its order p. The results obtained
agree with the Heisenberg uncertainty principle.

The parity of the real and imaginary parts. For com-
plex functions, it makes sense to consider the parities of
their real and imaginary parts separately. The construc-
tion of complex Kravchenko–Rvachev wavelets
ensures that the real part of an even AF is an even func-
tion, and its imaginary part is an odd function:

(25)

CONCLUSIONS

A new class of WA-systems of Kravchenko–
Rvachev functions and a family of complex wavelets
are obtained and substantiated. Their basic properties
are studied. It is shown that complex wavelets inherit
these properties from the AFs from which they are con-

1
2π
------ ω

0

+∞

∫ ψ̂

ψ̂

Re ψθ
p t–( )( ) Re ψθ

p t( )( ),=

Im ψθ
p t–( )( ) Im ψθ

p t( )( ) as θ t( )– θ t–( ).= =

structed. Note that, in main formula (2), the spectrum of
an arbitrary compactly supported function-window can

be used for (ω), and the shift of the spectrum in rela-
tion (17) can be any odd number multiplied by π. Large
shifts of the spectrum may be useful in applying ana-
lytic wavelet-transforms.
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Table 2.  The frequency spreads and supports of the complex Kravchenko–Rvachev wavelets (t) based on the AFs fupn(t)

p
fup1(t) fup2(t) fup3(t) fup4(t) fup5(t)

supp supp supp supp supp

1 1.00 [–2, 2] 0.83 [–2.5, 2.5] 0.73 [–3, 3] 0.65 [–3.5, 3.5] 0.59 [–4, 4]

2 0.65 [–2.5, 2.5] 0.57 [–3, 3] 0.53 [–3.5, 3.5] 0.49 [–4, 4] 0.45 [–4.5, 4.5]

3 0.49 [–3, 3] 0.44 [–3.5, 3.5] 0.41 [–4, 4] 0.39 [–4.5, 4.5] 0.37 [–5, 5]

4 0.39 [–3.5, 3.5] 0.36 [–4, 4] 0.34 [–4.5, 4.5] 0.32 [–5, 5] 0.31 [–5.5, 5.5]

5 0.33 [–4, 4] 0.31 [–4.5, 4.5] 0.29 [–5, 5] 0.28 [–5.5, 5.5] 0.27 [–6, 6]

ψθ
p

σω
2 σω

2 σω
2 σω

2 σω
2

Table 3.  The frequency spreads and supports of the complex Kravchenko–Rvachev wavelets (t) based on the AFs eupa(t)

p
eup1(t) eup2(t) eup3(t) eup4(t) eup5(t)

supp supp supp supp supp

1 2.11 [–1.5, 1.5] 2.62 [–1.5, 1.5] 3.15 [–1.5, 1.5] 3.66 [–1.5, 1.5] 4.14 [–1.5, 1.5]

2 1.47 [–2, 2] 1.98 [–2, 2] 2.50 [–2, 2] 3.02 [–2, 2] 3.51 [–2, 2]

3 1.16 [–2.5, 2.5] 1.67 [–2.5, 2.5] 2.20 [–2.5, 2.5] 2.71 [–2.5, 2.5] 3.20 [–2.5, 2.5]

4 0.99 [–3, 3] 1.49 [–3, 3] 2.01 [–3, 3] 2.53 [–3, 3] 3.02 [–3, 3]

5 0.87 [–3.5, 3.5] 1.37 [–3.5, 3.5] 1.89 [–3.5, 3.5] 2.41 [–3.5, 3.5] 2.90 [–3.5, 3.5]

ψθ
p

σω
2 σω

2 σω
2 σω

2 σω
2


