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INTRODUCTION

The variety of communication signals that exists
nowadays makes it possible to successfully solve tele-
communication, information, and other important prac-
tical problems. The requirements for the qualitative
properties of the corresponding systems are continually
growing. New types of signals exhibiting wider poten-
tialities were actively searched for in [1–3]. Therefore,
it seems reasonable to develop a novel class of fractal
ultra-wideband (FUWB) signals possessing all the
advantages of both existing ultra-wideband (UWB) sig-
nals and fractal signals.

MODELS OF FRACTAL UWB SIGNALS

We call FUWB signals those UWB signals that
exhibit the self-affinity property and the fractional
dimension. We now consider self-similar FUWB sig-
nals. In order to denote their dimension, we also use the
Minkowski dimension 

 

d

 

M

 

 estimated by the boxing tech-
nology [4]. The following requirements are imposed on
both the models 

 

s
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 of FUWB signals and spectral-den-
sity functions 
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f
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.

The models of UWB signals, which are rather suc-
cessful from the practical standpoint, are described by
wavelet-forming functions [5, 6], many of them being
UWB signals [7]. Among them, we can list the
Daubechies wavelets db2, db3, and db4; symlets sym2,
sym3, and sym4; coiflet wavelet coif1; biorthogonal
wavelets bior3.3 and bior3.5 (Figs. 1a–1i), etc. These
FUWB models have no analytical expressions and can
be constructed by numerical methods only on the basis
of iterative algorithms.

ANALYTICAL MODELS

As an example, we describe three analytical models
of FUWB signals. Using the Weierstrass function [3, 4]

we can construct the following model of FUWB sig-
nals:

where 
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 is the Heaviside step function. The shape of
the 

 

FUWB

 

1
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 model for different 
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 and 

 

β

 

 is shown in
Figs. 1j–1l. Here, 
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 = 

 

d

 

M

 

, and 0 < 

 

α

 

 < 1. Using the Rie-
mann function [3, 4]
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Fig. 1. Numerical and analytical models of fractal ultra-wideband (UWB) signals (wavelet-forming functions) in the time region:
(a) db2; (b) db3; (c) db4; (d) sym2; (e) sym3; (f) sym4; (g) coif1; (h) bior3.3; (i) bior3.5, (j) FUWB1(t), α = 0.5, β = 2; (k) FUWB1(t),
α = 0.6, β = 2; (l) FUWB1(t), α = 0.8, β = 2; (m) FUWB2(t); (n) FUWB3(t), β = 0.5; (o) FUWB3(t), β = 0.8; (p) FUWB3(t), β = 0.9;
(q) FUWB3(t), β = 1.1; (r) FUWB3(t).
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we can also construct the model of an FUWB signal
(Fig. 1m)

The third model of an UWB signal is based on the
complex-valued Riemann–Weierstrass function [3, 4]

and can be written as (Fig. 1n–1r)

We now compare the models for FUWB signals with
one of the models for nonfractal UWB signals

which were proposed in [8]. Here, N = 2n, where N is
the number of lobes for an UWB signal.

In order to describe the models of FUWB signals in
the time and frequency regions, it seems to be reason-
able to use the numerical characteristics described
in [9] as well as the Minkowski dimension dM .

FOURIER SPECTRUM 
OF AN FUWB SIGNAL

We consider the spectral-density function (SDF) of
a signal in the case of the Fourier transform S( f ). In
Fig. 2, the shapes of the functions S( f ) are presented for
different numerical and analytical models of an FUWB
signal. With increasing dM, the side-lobe level of the
SDF for a signal also rises. Nevertheless, no noticeable
variations of the index µ characterizing the spectral
bandwidth occur in this case. This is explained by the
fact that the relative width of the SDF main maximum
remains almost invariable. The matter of fact is that the
values of fmin and fmax are determined according to the
level of the SDF decrease by a factor of e with respect
to the maximum value. At the same time, variations
associated with an increase in dM occur below this level.
When the next (the second and, sometimes, the third)
SDF lobes attain this level, the quantity µ exhibits a
steplike change insofar as the value of fmax turns out not
to be in the first lobe but in one of the subsequent lobes.
This takes place in the case of the FUWB3 and bior3.3
models for β = 0.5–0.7 (Figs. 2m and 2g, respectively).
Therefore, the coefficient of the correlation between the
functions µ and dM is not high (K ≈ 0.14). An essential
negative correlation was found between the SDF width
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(γ3 for the 3-dB level and dM (K ≈ –0.17)). This implies
a disproportional distortion of the SDF main lobe,
which occurs with the rise of dM . The SDF is extended
in its lower part, whereas, in contrast, the upper part is
narrowed. Probably, energy transfer from the SDF main
lobe to the subsequent lobes occurs. A certain depen-
dence is observed between the relative position γ1 of the
SDF main maximum and dM (K ≈ –0.19). This is asso-
ciated with a minor increase in the asymmetry of the
SDF main lobe with the rise of dM . The strongest corre-
lation (K ≈ 0.46) is observed between dM and the equiv-
alent signal noise band γ8 . For other numerical charac-
teristics of an FUWB signal, a correlation dependence
on dM was not found (|K| < 0.1).

WAVELET SPECTRUM
OF FUWB SIGNALS

The wavelet spectrum [Wψ s](a, b) of a signal is
defined by both the signal model s(t), in itself, and the
wavelet basis used for the expansion [5]. The expres-
sion for the direct continuous wavelet transformation is
of the form

where a is the scaling parameter, b is the shift parame-
ter, and (t) is the function complex-conjugate to ψ(t).
A signal has a different shape in different bases. As
should be expected, continuous wavelet spectra of
FUWB signals are of a fractal nature. The wavelet-
spectrum pattern obtained for large values of a is
repeated many times for lesser values of a. As should be
expected, the characteristic feature of these spectra is
the presence in them spectral lines branching towards
smaller values of the scaling parameter a. With the rise
of dM, this branching is enhanced. The number of
branching lines increases with the number of lobes of
the analyzing wavelet.

DISCUSSION OF THE RESULTS
AND CONCLUSIONS

We consider the message redundancy associated
with the enhanced noise immunity and also the possi-
bility of arranging the data-transmission security as a
clear advantage of FUWB signals. This is explained by
the fact that the shape of many of FUWB signals (that
remain strictly determinate) reminds a noiselike struc-
ture. The existence of the indicated properties of
FUWB signals determines their advantage with respect
to ultrashort UWB signals [10]. There is also a certain
superiority of FUWB signals with respect to direct-cha-
otic UWB signals developed recently in [11]. The latter
ones are well adapted to data-transmission security
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but have no fractal property and, hence, lesser noise
immunity.

While using successively propagating ultrashort
UWB pulses, the danger arises of the shock action of
electromagnetic radiation on biological systems.
Direct-chaotic UWB signals turn out to be not time
structurized and not concentrated in the frequency.

Therefore, their action is determined by enhancing the
total background of electromagnetic radiation [11]. The
FUWB signals occupy an intermediate position
between these two extreme situations.

Fractal ultra-wideband signals (as well as ultrashort
UWB signals) allow us to overcome difficulties associ-
ated with the problem of multibeam propagation. They
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Fig. 2. Fourier spectra of numerical and analytical models for fractal ultra-wideband (FUWB) signals in the time region: (a) db2;
(b) db3; (c) db4; (d) sym2; (e) sym4; (f) coif1; (g) bior3.3; (h) bior3.5; (i) FUWB1(t), α = 0.5, β = 2; (j) FUWB1(t), α = 0.6, β = 2;
(k) FUWB1(t), α = 0.8, β = 2; (l) FUWB2(t); (m) FUWB3(t), β = 0.5; (n) FUWB3(t), β = 0.8; (o) FUWB3(t), β = 1.1; (p) FUWB3(t),
β = 1.3.
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can turn out to be efficient for the transmission of large
(hundreds of megabytes) information arrays for dis-
tances of several kilometers. The main disadvantage of
FUWB signals is associated with the necessity to
develop novel methods for signal generation, emission,
reception, and processing and to design the correspond-
ing technical tools and the component basis. In addi-
tion, for FUWB signals as for UWB signals, the disper-
sion distortions in both the equipment and the propaga-
tion channel are strongly expressed [8].

In spite of the disadvantages indicated above, the
development of the concept aimed at the use of FUWB
signals seems quite reasonable insofar as the expected
advantages can turn out to be rather efficient in various
radiophysical applications.
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