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INTRODUCTION

In recent years, signals of new types are finding
ever-widening applications in various areas of science
and engineering [1]. For their analysis, it is expedient to
apply, along with the conventional Fourier transform,
new mathematical methods based on the wavelet trans-
form, the theory of atomic functions (AF), and the
Wigner transform [2–5]. On the other hand, in actual
practice, signals are always detected and processed
against the background of noise. External noise is most
often represented by a random sequence of impulses
with random parameters; moreover, it is not necessarily
Gaussian. For such noise, expansion components of
different scales turn out to be correlated and, because of
this, linear methods of analysis are inefficient. The
qualitative indices for the nonlinear filtering of noise
can be increase by means of applying nonlinear trans-
forms. Therefore, it is reasonable to study the appropri-
ateness of applying the Choi–Williams transform in
signal analysis and to compare it to the Wigner trans-
form, to the conventional windowed Fourier transform
(WFT), and to AF.

BASIC PROPERTIES
OF THE CHOI–WILLIAMS TRANSFORM

The Choi–Williams transform [6, 7] of a signal 
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where the asterisk denotes the operation of complex
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, the Choi–Williams transform reduces to the Wigner
transform [6, 7]. Let us mention the basic properties of
the Choi–Williams transform [6]. The function of spec-
tral density (FSD) 
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, time reversal, complex
conjugation, energy conservation, and the presence of
marginal distributions and the interference term

It should be noted that, unlike the spectrogram and
scalogram, it is merely a convention that 
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may be called the function of spectral density, because
it is not positive and, hence, cannot represent the joint
time-frequency density of a signal [6]. The use of the
Choi–Williams transform in signal analysis is impor-
tant for the following reasons. First, it provides fuller
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Fig. 1. Analysis of function up(t): (a) signal; (b) FSD of the
Wigner transform; (c), (d), (e) FSD of the Choi–Williams
transform for σ = (c) 1000, (d) 10, (e) 0.01; and (f) Fourier
spectrogram.

information about the signal, rather than the employ-
ment of other tools such as spectrograms; second, it
enables one to analyze the time-frequency content of
individual singularities of the signal; and finally, it
makes it possible to analyze the corresponding FSD of
the signal.

INVESTIGATION OF SIGNALS ON THE BASIS 
OF ATOMIC FUNCTIONS

Analytic expressions for the FSD PCW f(τ, ω) of the
Choi–Williams transform can hardly be calculated;
therefore, satisfactory results can be obtained only in
the simplest cases. In practice, the Choi-Williams trans-
form is most commonly performed by means of numer-
ical calculations using computer algebra systems. In
our calculations, we used the TimeFreq Toolbox for
MATLAB 7.X [8]. We took AF and windows based on
these AF [2, 3] as the analyzed signals. AF are well
localized in both time and frequency domains. The
Choi–Williams transform possesses good time-fre-
quency properties. It is interesting to see whether this
transform adequately reflects the local singularities of
AF. Examples of analysis of AF are presented in Figs. 1
and 2. The FSD of the Choi–Williams transform of the
parent AF up(x) (of a typical video signal) has a typical
shape with a dip in the middle. With decreasing σ, it
becomes less pronounced. The spectrogram exhibits no
such dip. For the Kravchenko–Rvachev window [2, 3]
w2(x) = up(x) + 0.01up"(x), this typical dip can be seen
only in the FSD of the Wigner transform PV f(τ, ω) (the
primes denote the derivatives). For up'(x) (a model
ultrawideband signal), the FSD of the Choi–Williams
transform (Fig. 2) has two pronounced localized forma-
tions (as typical as in the case of function up'(x)) which
are parts of a more complex structure. Two maximums
located between these formations are of interferential
nature. The FSD of the Choi–Williams transform of
up''(x) has an even more complex structure. In addition,
a number of other AF were analyzed: fup1(x), fup2(x),
h3(x), h4(x), Ξ2(x), and Ξ3(x).

DISCUSSION AND CONCLUSIONS

The Choi–Williams transform has a number of
advantages such as high time-frequency resolution;
invariance under phase, frequency, and time shifts; and
the presence of marginal distributions. Moreover, this
transform (which is quadratic in the processed signal)
provides a method of nonlinear signal processing. It is
efficient, for instance, in the case where noise is not
normally distributed. Parameter σ, which allows adjust-
ing the level of interferential terms, makes it possible to
avoid the interference between the signals or between
the signal and noise; this interference is typical of the
Wigner transform [5]. A drawback of the Choi–Will-
iams transform is the complexity of integral (1), which
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makes it hardly applicable for analytic calculations.
Another disadvantage is that, with a decrease in the
level of interferential terms (decrease of σ), the local
singularities of the processed signal are also sup-
pressed; this reduces the time-frequency resolution.
Therefore, it is advisable to combine the Wigner trans-
form with the Choi–Williams transform.

It is also interesting to compare the potentialities of
the Choi–Williams transform to those of the WFT, as
well as to the WFT spectrogram. The WFT is a linear
transform of a signal, which, unlike the Choi–Williams
transform, is not invariant under phase, frequency, and
time shifts. In addition, the time-frequency resolution
of the WFT is determined by the characteristics of the
spectral window and turns out to be lower than that of
the Choi–Williams transform. The toll of this is the
presence of interference in the FSD of the Choi–Will-
iams transform. Similarly to the Choi–Williams trans-
form, the spectrogram of the WFT is invariant under
phase, frequency, and time shifts; however, unlike the
former, it has no marginal distributions and has a lower
time-frequency resolution. It is important that the spec-
trogram cannot be obtained from the Choi–Williams
transform by means of passing to the limit as σ → 0.
Nevertheless, as σ → 0, the shape of the FSD of the
Choi–Williams transform resembles the spectrogram.

Thus, when applying a combination of the Wigner
transform, the WFT spectrogram, and the Choi–Will-
iams transform, the first transform makes it possible to
establish the time-frequency localization of the pro-
cessed signal with a rather high accuracy; the second
transform allows eliminating false “signals” caused by
the interference in the FSD of the Wigner transform;
and the third transform enables one to observe the pro-
cess of suppression of interference over time and to dis-
tinguish interferential terms from the local singularities
of the signal, which can be lost in the spectrogram
because of its insufficient time-frequency resolution.
The Choi–Williams transform, which has a high time-
frequency resolution, is expedient to be used in the
analysis of new classes of signals [2, 3] based on AF,
Kravchenko–Rvachev windows, R-functions, and
wavelets, because such signals are well localized in the
time domain.

The results of this work were partly presented at the
Third International Conference “Ultrawideband and
Ultrashort Impulse Signals,” September 18–22, 2006,
Sevastopol, Ukraine [9].
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