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For the first time, nonparametric estimates of the
probability density and its derivatives are considered
on the basis of the theory of atomic functions (AFs)
[1–4]. New constructions of weight functions (WFs)
with compact support are proposed and substantiated
that allow building admissible estimates of both the
probability density in itself and its first and second
derivatives. The simple structure of the nonparametric
estimates and the possibility of using them in the cases
when a recovered variable is unknown make them suit�
able for physical applications [5, 6]. The proposed
novel mathematical apparatus of nonparametric sta�
tistics on the basis of the AFs allows estimating char�
acteristics of series in the absence of a priori paramet�
ric information.

ADMISSIBLE ESTIMATES 
OF THE PROBABILITY DENSITY

Let X1, X2, …, Xn be the sampling of n independent
observations of random variable X with the unknown
probability density function f(x). According to studies
[5, 6], the nonparametric estimate is determined as

, (1)

where h = h(n) is some series of positive numbers.
Here,  and K(x) is the even function satis�
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. The weight function K(x) is called admis�
sible if its Fourier transform is nonnegative and does
not exceed unity for all the real frequencies. For the
first moments of certain function H from statistics xn,
in the case when the characteristics of the statistics
moments are determined as the moments of the limit�
ing distribution of the estimate (mean, dispersion, and
root�mean�square error), under the condition of weak
convergence, the following theorem holds [5].

Theorem 1. If the distribution of a series of s�
dimensional random variables at  converges to
the s�dimensional normal distribution Ns{μ, σ} with
the vector of means μ = (μ1, μ2, …, μs) and the covari�
ance matrix σ (0 < σij = σij(x) < ∞, j = 1, 2, …, s), i.e.,

, , and ,
then

Here  is the class of the functions for which all the
partial derivatives up to the th order exist and

. Let  be the matrix of the second

derivatives with the , where i, j = 1, 2, …, s,

 is the s�dimensional random vari�
able; X2 is the one�dimensional random variable that
has the distribution χ2 with one degree of freedom and
N is the random variable distributed following the
standard normal law N1{0, 1}. The following three
cases are possible:
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(2) If , H(x) ∈ ,

, and , then (H(xn) – H(x)) ⇒

. 

(3) If , where Is is the iden�

tity diagonal matrix of the sth order, then (H(xn) –

(x)) converges by the distribution to the sum of weighted
sums s of the random variables X2 and s(s – 1) of the
products of independent standard normal random
variables, i.e., , , and

, then

The criterion of quality of the estimate of fn(x) is the
integral root�mean�square error determined as 

.

Here the angle parenthesis denotes averaging over the
ensemble. In the case when the WF is admissible, the
integral root�mean�square error of the estimate
obtained using this WF can be reduced for all the prob�
ability densities f(x) simultaneously.

NONPARAMETRIC KERNEL ESTIMATES

Let us consider constriction of the admissible WFs
by the example of the AF . As is known [1], the

AFs   are the finite solutions of the func�
tional differential equation

.

The main properties of the AF  are the follow�
ing:
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ω = 2πn, . If the value of ω is small, then in the
numerical implementation it is sufficient to limit the
consideration to a small number of terms of the prod�
uct, since they rapidly tend to 1 with increasing k.

Using property (3), we may write the function 

in the interval  as 

.

Let introduce the function ,
which is the convolution of the AF  with itself.
The function is even, infinitely differentiable, and

has the support . Repeating the convo�

lution operation for (l – 1) times, obtain the func�
tion

An important property of this function is that its Fou�
rier transform for the even index

is nonnegative and does not exceed unity. The admis�
sible WFs are built using the expression in the fre�
quency space Ψr(ω) = 1 – (1 – ϕa(ω))r/2, r = 2, 4, …,
which is also positive and does not exceed unity. Then,
the admissible WF is calculated as

(2)

For instance, for several values of r, we obtain Ka, 2(x) =
cha, 1(x), Ka, 4(x) = 2cha, 1(x) – cha, 2(x), and Ka, 6(x) =

. The form of the WFs
Ka, r(x) and their derivatives is presented in Fig. 1.

≠ 0n

( )ah x

1 1,
1 1

x
a a

⎡ ⎤∈ −
⎢ ⎥⎣ ⎦− −

( ) ( )
∞

=

⎛ ⎞
= − + ϕ − π − π⎜ ⎟⎜ ⎟

⎝ ⎠
∑

1

1( ) ( 1) ( 1) cos ( 1)
2

a a

k

h x a a k a kx

( ) ( ) ( )a a ach x h x h x= *
( )ah x

⎡ ⎤−
⎢ ⎥⎣ ⎦− −

2 2,
1 1a a

[ ] ( )

−

−

∞

−∞

−

− −

= ϕ ω ω ω =
π

⎡ ⎤= −
⎢ ⎥⎣ ⎦− −

=

∫

∫

supp

1

1

,

,

( 1)

,

( 1)

1( ) ( ) exp , 1,2,...,
2

( ) , ,
1 1

( ) 1.

l
a l a

a l

l a

a l

l a

ch x i x d l

l lch x
a a

ch x dx

( ) [ ]

∞

−∞

− ω = ϕ ω∫
2

,2 ( )exp ( ) l
a l ach x i x dx

( ) ( )

∞

−∞

= − − ϕ ω ω ω

π

=

∫ 2 /2
,

1( ) {1 (1 ) }exp ,
2

2,4,...

r
a r aK x i x d

r

− +,1 ,2 ,33 ( ) 3 ( ) ( )a a ach x ch x ch x



DOKLADY PHYSICS  Vol. 56  No. 9  2011

ATOMIC FUNCTIONS AND NONPARAMETRIC ESTIMATES 473

ADMISSIBLE ESTIMATES OF DERIVATIVES 
OF THE PROBABILITY DENSITY FUNCTION

We write the estimate of the value of f '(x) as

, (3)

where  is the decreasing sequence of positive

numbers, N(x) is the even function ,

and . If take Nr(x) = , ,
then we obtain the admissible weight functions
of rth orders. Similarly, for the second derivatives of
the probability density function, we have
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where h = h(n) is the decreasing sequence of positive

numbers, M(x) is the even function ,

and . If take Mr(x) = , ,
then we obtain the admissible WFs of the rth orders.

PHYSICAL CHARACTERISTICS 
OF THE ADMISSIBLE WEIGHT FUNCTIONS

To study spectral kernels, we use the modified
physical characteristics [1–3, 7–10]: the width of the
spectral density function at the level of –3 dB ( ), the
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Fig. 1. Form of the weight functions Ka, r(x) and their first and second derivatives for a = 2, r = 2 (on the left) and a = 3, r = 4
(on the right).
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relative width of the spectral density function at the

level of –6 dB ( ), the maximum level of side

lobes in dB ( ), the L2 norm of a WF (P), the uncer�
tainty constant (Δ), the support (supp), and the effec�

tive support  = . The

γ γ/4 3

γ9

( )suppE f x ( ) =

2
{ 0.999 }

L
x f x P

physical characteristics of the WF  for different
a and r are given in the table.

Let consider the example of estimating the proba�
bility density function of a sequence of random vari�
ables Xn with the normal distribution law

, ( )a rK x
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Fig. 2. (a) Sequence of random variables Xn (n = 2500) and (b–d) estimate of fn(x), Dfn(x), D2fn(x) at a = 2 and r = 2.

Physical characteristics of the WF Ka, r(x) for different parameters a and r

r a γ3 γ4/γ3 γ9 P Δ supp suppE

2 2 1.720 1.391 –46.586 0.945 0.502 4 2.029
3 2.693 1.444 –34.028 0.735 0.508 2 1.233
4 3.815 1.412 –30.492 0.622 0.513 4/3 0.898
5 4.787 1.375 –28.988 0.549 0.518 1 0.708
6 5.610 1.467 –28.213 0.496 0.522 4/5 0.587
7 6.732 1.400 –27.755 0.456 0.525 2/3 0.501

4 2 2.581 1.232 –40.585 0.883 0.544 8 2.669
3 4.114 1.236 –28.094 0.682 0.560 4 1.662
4 5.610 1.240 –24.602 0.573 0.574 8/3 1.218
5 7.181 1.229 –23.124 0.503 0.585 2 0.964
6 8.602 1.239 –22.358 0.454 0.593 8/5 0.796
7 10.098 1.222 –21.908 0.416 0.599 4/3 0.682

6 2 3.017 1.182 –37.084 0.852 0.588 12 2.669
3 4.837 1.186 –24.658 0.654 0.614 6 1.674
4 6.583 1.182 –21.208 0.547 0.638 4 1.225
5 8.378 1.167 –19.756 0.478 0.656 3 0.972
6 10.098 1.173 –19.005 0.429 0.670 12/5 0.805
7 11.819 1.165 –18.565 0.393 0.680 2 0.687
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,

where the average of distribution is μ = 0.5 and the
standard deviation is σ = 1 (Fig. 2a). The results of
estimation of the distribution density function f (x)
and two of its derivatives for a = 2, r = 2, and
n = 2500 are shown in Figs. 2b–2d.

Thus, the new constructions of the WFs with a
compact support on the basis of the AF theory are pro�
posed. The admissible nonparametric estimations of
the probability density and its first and second deriva�
tives for the sequence of random variables are con�
structed. The numerical experiment and physical
analysis confirm the efficiency of the novel nonpara�
metric estimations of the probability density function.

The results of this work were reported at the Interna�
tional conference “Days on Diffraction 2011” [9, 10].
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